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ABSTRACT

The paper is devoted to the notion of a spectral section introduced by

Melrose and Piazza. In the first part of the paper we generalize results of

Melrose and Piazza to arbitrary base spaces, not necessarily compact. The

second part contains a number of special cases, including cobordism theo-

rems for families of Dirac type operators parametrized by a non-compact

base space. In the third part of the paper we investigate whether Riesz

continuity is necessary for existence of a spectral section or a generalized

spectral section. In particular, we show that if a graph continuous family

of regular self-adjoint operators with compact resolvents has a spectral

section, then the family is Riesz continuous.
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1. Introduction

In this paper we deal with families of regular (that is, closed and densely defined)

linear operators with compact resolvents acting between Hilbert spaces and

parametrized by points of an arbitrary topological space X.

Throughout the paper, “Hilbert space” always means a separable complex

Hilbert space of infinite dimension; “projection” always means an orthogonal

projection, that is, a self-adjoint idempotent; B(H,H ′) denotes the space of

bounded linear operators from H to H ′ with the norm topology, K(H,H ′) de-

notes the subspace of B(H,H ′) consisting of compact operators, Bsa(H) denotes

the subspace of B(H) = B(H,H) consisting of self-adjoint operators, and P(H)

denotes the subspace of Bsa(H) consisting of projections.
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Spectral sections. The notion of a spectral section was introduced by Mel-

rose and Piazza in [MP1], in order to give a family version of a global boundary

condition of Atiyah–Patody–Singer type. It is convenient to split [MP1, Defi-

nition 1] into two parts, as we do below.

Let A be a regular self-adjoint operator with compact resolvents. A projec-

tion P is called an r-spectral section for A if

(1.1) Au = λu =⇒
⎧⎨
⎩
Pu = u if λ � r,
Pu = 0 if λ � −r

.

In other words,

(1.2) �[r,+∞)(A) � P � �(−r,+∞)(A).

Here �S denotes the characteristic function of the subset S ⊂ R, and we use the

natural partial order on the set of projections. We also say that P is a spectral

section for A with a cut-off parameter r.

Let now A = (Ax)x∈X be a family of regular self-adjoint operators with com-

pact resolvents and r : X → R+ be a continuous function. A norm continuous

family P = (Px)x∈X of projections is called an r-spectral section for A if, for

every x ∈ X, the projection Px is an rx-spectral section for the operator Ax. We

also say that P is a spectral section for A with a cut-off function r.

Note that the requirement for the family (Px) of projections and for the cut-

off function r to be continuous is an essential part of the definition of a spectral

section.

In (1.1) we replaced strict inequalities used by Melrose and Piazza with non-

strict ones, since it simplifies statements of our results. It influences only the

cut-off function and does not change the notion of a spectral section.

Generalized spectral sections. The notion of a generalized spectral sec-

tion was introduced by Dai and Zhang in [DZ] in order to cover both usual

spectral sections and the Calderón projection. A projection P is called a gen-

eralized spectral section for a self-adjoint operator A if P − �[0,+∞)(A) is a

compact operator. A norm continuous family P = (Px)x∈X of projections is

called a generalized spectral section for a family A = (Ax) of self-adjoint

operators if Px is a generalized spectral section for Ax for every x ∈ X. (We
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omit a requirement from [DZ, Definition 2.1] for projections Px to be pseudo-

differential, since we work in the general functional-analytic framework in the

most part of the paper.)

Compact base spaces. Let A be a family of first order elliptic self-adjoint

differential operators over a closed manifold parametrized by points of a compact

space X. As was shown by Melrose and Piazza in [MP1, Proposition 1], for such

a family A the existence of a spectral section is equivalent to the vanishing of

the index of A in K1(X).

Recall that the Riesz topology on the set R(H,H ′) of regular operators

from H to H ′ is induced by the bounded transform map

f : R(H,H ′) → B(H,H ′), f(A) = A(1 +A∗A)−1/2,

from the norm topology on B(H,H ′). If a family of elliptic differential oper-

ators over a closed manifold has continuously changing coefficients, then the

corresponding family of regular operators acting between the Hilbert spaces of

square-integrable sections of corresponding vector bundles is Riesz continuous.

The proof of Melrose and Piazza does not use the specifics of differential

operators, so their result can be stated in a more general form:

Proposition 1.1: Let X be a compact space and A = (Ax)x∈X be a Riesz con-

tinuous family of self-adjoint regular operators with compact resolvents acting

on a Hilbert space H. Then the following two conditions are equivalent:

(1) A has a spectral section.

(2) ind(A) = 0 ∈ K1(X).

Melrose and Piazza also proved a Z2-graded analog of this result in [MP2,

Proposition 2]. The proofs of these results in [MP1, MP2] depend crucially on

the base space being compact.

Arbitrary base spaces. The aim of the first part of this paper is to generalize

the aforementioned results of Melrose and Piazza to arbitrary base spaces, not

necessarily compact. In particular, we prove the following generalization of

Proposition 1.1.

Theorem 4.4: Let X be an arbitrary topological space and A = (Ax)x∈X be a

Riesz continuous family of regular self-adjoint operators with compact resolvents

acting on a Hilbert space H. Then the following three conditions are equivalent:
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(1) A has a spectral section.

(2) A has a generalized spectral section.

(3) A is homotopic to a family of invertible operators.

If P is a generalized spectral section for A, then for every ε > 0 a spectral

section Q for A can be chosen so that ‖Q− P‖∞ < ε and Q is homotopic to P

as a generalized spectral section.

We also prove a Z2-graded version of this result; see Theorem 6.6. It deals

with Cl(1) spectral sections for odd self-adjoint operators and generalizes [MP2,

Proposition 2] in the same manner as Theorem 4.4 generalizes [MP1, Proposi-

tion 1].

Trivializing operators of finite rank. Melrose and Piazza showed in

[MP1, Lemma 8] that if a self-adjoint family A over a compact base space

has a spectral section P, then there is a “trivializing” family C of self-adjoint

finite rank operators such that the “trivialized” family A ′ = A + C consists of

invertible operators and P is the family of positive spectral projections for A ′.
They also proved a Z2-graded analog in [MP2, Lemma 1]. We generalize both

these results to arbitrary base spaces in Sections 5–6.

Applications. In Part 2 we present a variety of special cases illustrating how

the results of Part 1 can be used. In particular, in Section 9 we generalize the

famous Cobordism Theorem for Dirac operators to arbitrary, not necessarily

compact, base spaces. We show in Theorem 9.7 that for an arbitrary family

of Dirac type operators on a compact manifold with boundary, the family of

symmetrized boundary operators has a spectral section. The Z/2-graded case

of this result is given by Theorem 10.2. In our cobordism theorems, we do

not require the product form of the operator near the boundary, neither do we

require the product form of the metric.

Graph continuous families. The Riesz topology on the set of regular oper-

ators is well suited for the theory of differential operators on closed manifolds.

However, it is not quite adequate for differential operators on manifolds with

boundary: it is unknown, except for several special cases, whether families of

regular operators defined by boundary value problems are Riesz continuous. In

the context of boundary value problems, the better suited topology is the graph

topology.
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The graph topology on R(H,H ′) is induced by the inclusion of R(H,H ′)
to P(H ⊕ H ′) taking a regular operator to the orthogonal projection onto its

graph. A family of elliptic operators and boundary conditions with continuously

varying coefficients leads to a graph continuous family of regular operators [P1,

Appendix A.5].

A spectral section of a Riesz continuous family always exists locally. As we

saw above, there is a topological obstruction for existence of a global spectral

section, which in the case of a compact base space takes a value in the K1-group

of the base. A graph continuous family, however, may admit no spectral section

even locally. In fact, Riesz continuity is necessary for a local existence of a

spectral section, as the following result shows.

Theorem 12.1: Let A = (Ax)x∈X be a graph continuous family of regular self-

adjoint operators with compact resolvents acting on a Hilbert space H. Suppose

that A admits a spectral section. Then A is Riesz continuous.

The situation with generalized spectral sections for graph continuous families

is more complicated, as we show in Section 13. On the one hand, a generalized

spectral section does not necessarily exist even when a base space is an interval

and/or a family consists of invertible operators. On the other hand, existence

of a generalized spectral section does not imply Riesz continuity.

Added in proofs. Recently, Ivanov proved the first part of Theorem 4.4 in a

more general context, for operators which act in the fibers of a Hilbert bundle

and are Riesz continuous with respect to appropriate local trivializations. See

[I1, Corollary 6.2] or [I2, Corollary 4.5 or 5.4]. (Ivanov’s language differs from

ours; we explain in [P2] how they are related.) Similarly, our Theorem 3.2

was generalized by Ivanov to an even wider class of operator families, see [I1,

Theorem 5.2].

Acknowledgments. I am grateful to N. V. Ivanov for useful remarks and

suggestions.

2. Preliminaries

In this section we recall some basic facts about regular operators (for a more

detailed exposition see, for example, [Le, BLP, Ka]) and introduce some desig-

nations that are used in the rest of the paper.
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Regular operators. An unbounded operator A from H to H ′ is a linear

operator defined on a subspace D of H and taking values in H ′; the subspace D
is called the domain of A and is denoted by dom(A). An unbounded operator A

is called closed if its graph is closed in H⊕H ′ and densely defined if its domain is

dense in H. It is called regular if it is closed and densely defined. Let R(H,H ′)
denote the set of all regular operators from H to H ′, and let R(H) = R(H,H).

The adjoint operator of an operator A ∈ R(H,H ′) is an unbounded oper-

ator A∗ from H ′ to H with the domain

dom(A∗)= {u ∈ H ′ |there exists v∈H such that 〈Aw,u〉=〈w, v〉 for all w∈H}.
For u ∈ dom(A∗) such an element v is unique and A∗u = v by definition. The

adjoint of a regular operator is itself a regular operator.

An operator A ∈ R(H) is called self-adjoint if A∗ = A (in particular,

dom(A∗) = dom(A)). Let Rsa(H) ⊂ R(H) be the subset of self-adjoint reg-

ular operators.

Operators with compact resolvents. For a regular operatorA∈R(H,H ′),
the operator 1 + A∗A is regular, self-adjoint, and has dense range. Its densely

defined inverse (1+A∗A)−1 is bounded and hence can be extended to a bounded

operator defined on the whole H. A regular operator A ∈ R(H,H ′) is said to

have compact resolvents if

(1+A∗A)−1 ∈ K(H) and (1+AA∗)−1 ∈ K(H ′).

We denote by RK(H) the subset of R(H) consisting of regular operators with

compact resolvents.

Let Rsa
K (H) = Rsa(H)∩RK(H) be the subset of R(H) consisting of self-adjoint

operators with compact resolvents. Equivalently, a self-adjoint regular opera-

tor A is an operator with compact resolvents if (A+ i)−1 is a compact operator.

Such an operator has a discrete real spectrum.

Bounded transform. The bounded transform (or the Riesz map)

A �→ f(A) = A(1+ A∗A)−1/2

defines the inclusion of the set R(H,H ′) of regular operators to the unit ball in

the space B(H,H ′) of bounded operators, with the image

f(R(H,H ′)) = {a ∈ B(H,H ′) | ‖a‖ � 1 and 1− a∗a is injective}.

The inverse map is given by the formula f−1(a) = a(1− a∗a)−1/2.
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If A is self-adjoint, then so is f(A). If A has compact resolvents, then a = f(A)

is essentially unitary (that is, both 1−a∗a and 1−aa∗ are compact operators).

Essentially unitary operators.LetBeu(H,H
′) be the subspace ofB(H,H ′)

consisting of essentially unitary operators. The bounded transform takes

RK(H,H
′) to

f(RK(H,H
′)) = {a ∈ Beu(H,H

′) | ‖a‖ � 1 and 1− a∗a is injective}.

Let Bsa
eu(H) be the the subspace of B(H,H ′) consisting of self-adjoint essentially

unitary operators.

In Section 3 and the first part of Section 6 we prove our results simultaneously

both for regular operators with compact resolvents and for essentially unitary

operators.

The notion of a generalized spectral section given in the Introduction works

as well for self-adjoint essentially unitary operators. Equivalently, a projec-

tion P is a generalized spectral section for a ∈ Bsa
eu(H) if (2P − 1) − a ∈ K(H)

(since �[0,+∞)(a) is a compact deformation of (a+ 1)/2 for a ∈ Bsa
eu(H)).

We call a projection P an r-spectral section for a ∈ Bsa
eu(H) and r ∈ (0, 1)

if �[r,+∞)(a) � P � �(−r,+∞)(a). Let r : X→ (0, 1) be a continuous function; we

call a norm continuous family of projections P = (Px)x∈X an r-spectral section

(or simply a spectral section) for a family a = (ax) of self-adjoint essentially

unitary operators if Px is an rx-spectral section for ax for every x ∈ X.
A family P = (Px) of projections is a generalized spectral section, resp. r-

spectral section for a family A = (Ax) of self-adjoint regular operators with

compact resolvents if and only if P is a generalized spectral section, resp. (f◦r)-
spectral section for the family f ◦A of self-adjoint essentially unitary operators.

Two topologies on R(H,H ′). There are several natural topologies on the set

of regular operators. The two most useful of them are the Riesz topology and

the graph topology. They are induced by the inclusions of R(H,H ′) to B(H,H ′)
and to P(H⊕H ′), respectively; see Introduction for details.

We will always specify what topology (Riesz or graph) on R(H,H ′) we con-

sider. We will write rR(H,H ′) or gR(H,H ′) for the space of regular operators

with Riesz or graph topology, respectively. Alternatively, we will write “Riesz

continuous” or “graph continuous” for maps from or to R(H,H ′) and for families

of regular operators.
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On the subset B(H,H ′) ⊂ R(H,H ′) both Riesz and graph topology coin-

cide with the usual norm topology. Therefore, we always consider B(H,H ′) as
equipped with the norm topology.

Spectral projections. The spectrum of an operator A ∈ Rsa
K (H) is discrete

and real. For real numbers a < b, the spectral projection �[a,b](A) is defined

as �[f(a),f(b)](f(A)); its range is the subspace of H spanned by eigenvectors

of A with eigenvalues in the interval [a,b]. Similarly, �[a,+∞)(A) is defined

as �[f(a),1](f(A)) and �(−∞,a](A) is defined as �[−1,f(a)](f(A)). The spectral

projections for semi-open and open intervals are defined in the same manner.

Let Res(A) denote the resolvent set of A. For a compact subspace K ⊂ R,

the subset

VK = {A ∈ Rsa
K (H) | K ⊂ Res(A)}

is open in both Riesz and graph topology on Rsa
K (H).

The map V{a,b} → P(H) taking A to �[a,b](A) is both Riesz-to-norm and

graph-to-norm continuous. However, the spectral projection maps Va → P(H)

corresponding to unbounded intervals, A �→ �(−∞,a](A) and A �→ �[a,+∞)(A),

are only Riesz-to-norm continuous, but not graph-to-norm continuous. This is

the major difference between the two topologies in our context.

Part 1. Riesz continuous families

Throughout this part, all families of regular operators are supposed to be Riesz

continuous.

3. Generalized spectral sections

Homotopy Lifting Property. Recall that a continuous map Y → Z between

topological spaces is said to have the Homotopy Lifting Property for a space X

if for every homotopy h : X× [0, 1] → Z, every lifting h̃0 : X× {0} → Y of h0 can

be continued to a lifting h̃ : X× [0, 1] → Y of h.

In this section the base space Z is either rRsa
K (H) or Bsa

eu(H). For the most

part of the section, our reasoning works for both these cases simultaneously.

Let Z be one of these two spaces. Let I denote the range of cut-off parameters

for Z, that is, I = R+ if Z = Rsa
K (H) and I = (0, 1) if Z = Bsa

eu(H).

Let G denote the subspace of Z × P(H) consisting of pairs (A,P) such that

P is a generalized spectral section for A. We consider G as the total space of a

fiber bundle over Z, with the projection πG : G → Z taking (A,P) to A.
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Theorem 3.1: The fiber bundle πG : G → Z is locally trivial and has the Ho-

motopy Lifting Property for all spaces.

Proof. The family (Zr)r∈I, Zr = {A ∈ Z | r ∈ Res(A)}, is an open covering of Z.

For every r ∈ I, the map S+r : Zr → P(H) defined by the formula

S+r (A) = �[r,+∞)(A)

is continuous. The restriction of G to Zr is

(3.1) G|Zr
= {(A,P) | A ∈ Zr and P − S+r (A) ∈ K(H)}.

Our next goal is to trivialize S+r locally. To this end, take an open covering

(VQ)Q∈P(H) of P(H), where

VQ = {P ∈ P(H) | ‖P −Q‖ < 1}.

By [WO, Proposition 5.2.6] for every Q ∈ P(H) there is a continuous map

gQ : VQ → U(H) such that

(3.2) P = gQ(P)Q (gQ(P))∗ for every P ∈ VQ.

The inverse images

Zr,Q = (S+r )
−1(VQ) ⊂ Zr,

with r running I and Q running P(H), form an open covering (Zr,Q) of Z. We

claim that the restriction Gr,Q of G to Zr,Q is a trivial bundle with the fiber

FQ = {P ∈ P(H) | P −Q ∈ K(H)}.

Indeed, fix an arbitrary pair (r,Q) and consider the map

g = gQ ◦ S+r : Zr,Q → U(H).

It follows from (3.2) that (g(A))∗ S+r (A)g(A) = Q does not depend on A∈Zr,Q.

Together with (3.1) this implies that the map

Φ : Gr,Q → Zr,Q × FQ, Φ(A,P) = (A, g(A)∗ P g(A))

is a trivializing bundle isomorphism, which proves the claim.

For both Z = rRsa
K (H) and Z = Bsa

eu(H) the topology of Z is induced by the em-

bedding of Z to B(H), so Z is a metric space. This implies paracompactness of Z

[St, Corollary 1]. Thus πG is a locally trivial fiber bundle with a paracompact

base space. By [Hu, Uniformization Theorem], πG has the Homotopy Lifting

Property for all spaces. This completes the proof of the proposition.
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Generalized spectral sections. Using Theorem 3.1, we now can prove the

following result.

Theorem 3.2: Let X be an arbitrary topological space and Z be either rRsa
K (H)

or Bsa
eu(H). Let A : X → Z be a continuous map. Then the following two

conditions are equivalent:

(1) A has a generalized spectral section.

(2) A is homotopic (as a map from X to Z) to a family of invertible opera-

tors.

Proof. ((2) ⇒ (1)) Let h : X × [0, 1] → Z be a homotopy between A = h1

and an invertible family h0. Since h0 is invertible, it has a spectral sec-

tion P0(x) = �[0,+∞)(h0(x)). Then the map h̃0 : X→ G given by the formula

h̃0(x) = (h0(x),P0(x))

covers h0. By Theorem 3.1, h̃0 can be continued to a map h̃ : X × [0, 1] → G

covering h. Restriction of h̃ to X × {1} gives the map h̃1 : X → G covering A.

The composition of h̃1 with the natural projection G → P(H) is a generalized

spectral section for A.

((1) ⇒ (2)) Let P : X→ P(H) be a generalized spectral section for A : X→ Z.

Then T : X → B(H), T(x) = 2P(x) − 1, is a continuous family of symmetries

(that is, self-adjoint unitaries).

1. Consider first the case Z = Bsa
eu(H). Then A(x) − T(x) ∈ K(H) for

every x ∈ X. Therefore,
h : X× [0, 1] → Bsa

eu(H), ht(x) = (1 − t)A(x) + tT(x)

is a homotopy from h0 = A to h1 = T , with T(x) invertible for every x ∈ X.
2. Let now Z = rRsa

K (H). The composition

a = f ◦A : X→ Bsa
eu(H)

is continuous and a(x) − T(x) ∈ K(H) for every x ∈ X. One is tempted to

apply f−1 to the linear homotopy between a and T , as above. But the image

of f,

(3.3) f(Rsa
K (H)) = {b ∈ Bsa

eu(H) | ‖b‖ � 1 and 1− b2 is injective},

does not contain T(x), so this naive idea does not work. To fix it, we replace T

by its compact deformation T ′ lying in the image of f. Let us fix a strictly

positive compact operator K ∈ K(H) of norm less than 1. For example, one
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can identify H with l2(N) and take the diagonal operator K = diag(12 ,
1
3 ,

1
4 , . . .).

Then

T ′(x) = (1 − K)T(x)(1− K)

is self-adjoint and invertible, ‖T ′(x)‖ � 1, and T ′(x) − T(x) ∈ K(H). Let

at(x)=(1 − t)a(x) + tT ′(x) be the linear homotopy between a0=a and a1=T
′.

By definition, a0(x)=f(A(x)) lies in the image of f. For every t ∈ (0, 1], x ∈ X,
and ξ ∈ H \ {0} we get

‖at(x)ξ‖ < ‖ξ‖,
so 1 − at(x)

2 is injective and thus at(x) lies in the image of f. Applying f−1

to at(x), we obtain a homotopy h : X× [0, 1] → Rsa
K (H),

ht(x) = f
−1(at(x)),

connecting h0 = A with an invertible family f−1(T ′). This completes the proof

of the theorem.

4. Spectral sections

In this section Z always denotes the space Rsa
K (H) equipped with the Riesz

topology.

Fiber homotopy equivalence. Let S be the subspace of Z × P(H) × R+

consisting of triples (A,P, r) such that P is an r-spectral section for A. We

consider S as the total space of a fiber bundle over Z, with the projection

πS : S → Z taking (A,P, r) to A.

Theorem 4.1: The bundle map ι : S → G taking (A,P, r) to (A,P) is a fiber

homotopy equivalence. Moreover, for every ε > 0, a fiber homotopy inverse

bundle map ϕ = ϕε : G → S can be chosen so that ‖Q − P‖ < ε for every

(A,P) ∈ G, (A,Q) = ι ◦ϕ(A,P).
As an immediate corollary of this theorem we get the following result.

Corollary 4.2: The fiber bundle πS : S → Z has the Weak Homotopy Lifting

Property for all spaces (that is, for any homotopy h : X × [0, 1] → Z and for

any lifting h̃0 : X × {0} → S of h0, there is a lifting X × [0, 1] → S of h whose

restriction to X× {0} is vertically homotopic to h̃0).
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Proof of Theorem 4.1. Without restriction of generality, we can suppose

that ε < 1. Fix δ ∈ (0, ε2 ).

Let (A,P) be an arbitrary element of G. For r � 0, define the spectral

projections

(4.1) S−r (A)=�(−∞,r](A), S◦r(A)=�(−r,r)(A), and S+r (A)=�[r,+∞)(A).

We approximate P by bounded self-adjoint operators

(4.2) Tr(A,P) = S
+
r (A) + S

◦
r(A)P S

◦
r(A).

The map Tr : G → B(H) so defined is continuous on the open subset

{(A,P) ∈ G | ±r ∈ Res(A)} of G. Equality (4.2) can be written equivalently as

(4.3) Tr(A,P) = S
+
0 (A) + S

◦
r(A)(P − S+0 (A))S

◦
r(A).

Consider the family

U = (Ur)r>0, Ur = {(A,P) ∈ G | ±r ∈ Res(A) and ‖Tr(A,P) − P‖ < δ}
of open subsets of G. We claim that U is an open covering of G. Indeed,

let (A,P) be an arbitrary point of G. Since P is a generalized spectral section

for A, the difference P−S+0 (A) is a compact operator. The net {S◦r(A)}r>0 is an

approximate unit for K(H). Therefore, the second summand in the right hand

side of (4.3) has a limit P−S+0 (A), and Tr(A,P)−P → 0 as r→ +∞. It follows

that (A,P) lies in Ur for r large enough, and thus U covers G.

The topology of Z × P(H) is induced by its embedding to B(H) × B(H),

so Z × P(H), as well as its subspace G, is a metric space. It follows from [St,

Corollary 1] that G is paracompact. Hence there is a partition of unity (ui)

subordinated to U, with supp(ui) ⊂ Uri . (By a partition of unity we always

mean a locally finite partition.) For every (A,P) ∈ G we define a bounded

self-adjoint operator T(A,P) by the formula

(4.4) T(A,P) =
∑

ui(A,P) · Tri(A,P).
The restriction of Tr to Ur is continuous, so all the summands in (4.4) are

continuous, and thus T itself is continuous as a map from G to B(H).

If ui(A,P) 
= 0, then (A,P) ∈ Uri and ‖Tri(A,P) − P‖ < δ. Therefore,
(4.5) ‖T(A,P) − P‖ < δ for every (A,P) ∈ G.

The spectrum of P is contained in {0, 1}, so the last inequality implies that the

spectrum of T(A,P) lies in Λ = [−δ, δ] ∪ [1 − δ, 1+ δ]. Since δ < 1
2 , these two
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intervals are disjoint. The function �[ 1
2
,+∞) is continuous (and even smooth)

on Λ, so the projection

Q(A,P) = �[ 12 ,+∞)(T(A,P))

depends continuously on (A,P). Moreover, ‖Q(A,P) − T(A,P)‖ � δ, which

together with (4.5) provides an estimate ‖Q(A,P)−P‖ < ε for every (A,P) ∈ G.

Let (A,P) ∈ G and r = max{ri | ui(A,P) 
= 0}. Then

T(A,P) = 0⊕ T◦(A,P)⊕ 1

and thus Q(A,P) = 0⊕Q◦(A,P)⊕ 1 with respect to the orthogonal decompo-

sition

H = H− ⊕H◦ ⊕H+, where Hα = Im(Sαr (A)) for α ∈ {+,−, ◦}.
In other words, Q(A,P) is an r-spectral section for A.

For every point (A,P) ∈ G choose its neighborhood VA,P ⊂ G intersecting

only a finite number of inverse images u−1
i (0, 1]. Let (vj) be a partition of unity

subordinated to the covering V = (VA,P) of G. Let

Rj = max{ri | u
−1
i (0, 1] ∩ v−1

j (0, 1] 
= ∅}.
We define a continuous map R : G → R+ by the formula

R(A,P) =
∑

vj(A,P) · Rj.
Then R(A,P) � max{ri | ui(A,P) 
= 0} for every (A,P) ∈ G, so Q(A,P) is an

R(A,P)-spectral section for A.

Finally, we define the map ϕ : G → S by the formula

ϕ(A,P) = (A,Q(A,P),R(A,P)).

It remains to show that ϕ is fiber homotopy inverse to ι. This follows imme-

diately from the following lemma.

Lemma 4.3: Letϕ : G→S be a continuous map, ϕ(A,P)=(A,Q(A,P),R(A,P)),

such that ‖Q(A,P) − P‖ < 1 for every (A,P) ∈ G. Then ϕ is fiber homotopy

inverse to ι.

Proof. The formula

[P0,P1]t = �[ 12 ,+∞)((1 − t)P0 + tP1)

determines a continuous map

P(H)2 × [0, 1] ⊃ {(P0,P1, t) | ‖P0 − P1‖ < 1} → P(H),
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since (1 − t)P0 + tP1 lies distance less than 1/2 either from P0 or from P1 and

thus its spectrum is contained in [0, 1/2) ∪ (1/2, 1]. Clearly, [P0,P1]t = Pt

for t = 0, 1. If both P0 and P1 are generalized spectral sections (respectively

r-spectral sections) for A, then [P0,P1]t is also a generalized spectral section

(respectively r-spectral section) for A.

We will write Q and R instead of Q(A,P) and R(A,P) for brevity. A bundle

homotopy between IdG and ι◦ϕ is given by the formula ht(A,P) = (A, [P,Q]t).

To construct a homotopy between IdS and ϕ ◦ ι, we use three auxiliary homo-

topies. The first homotopy h ′
t(A,P, r) = (A,P, r + tR) connects (A,P, r) with

(A,P, r+R). The second one h ′′
t (A,P, r)=(A, [P,Q]t, r+R) connects (A,P, r+R)

with (A,Q, r + R). The third one h ′′′
t (A,P, r) = (A,Q, (1 − t)r + R) connects

(A,Q, r+R) with ϕ◦ι(A,P, r) = (A,Q,R). The concatenation of h ′, h ′′, and h ′′′

is a desired bundle homotopy between IdS and ϕ ◦ ι. This completes the proof

of the lemma and the theorem.

Spectral sections. Using Theorem 4.1, we immediately obtain the following

result.

Theorem 4.4: Let X be an arbitrary topological space and A : X→ Rsa
K (H) be

a Riesz continuous map. Then the following three conditions are equivalent:

(1) A has a spectral section.

(2) A has a generalized spectral section.

(3) A is homotopic, via a Riesz continuous homotopy X× [0, 1] → Rsa
K (H),

to a family of invertible operators.

If P is a generalized spectral section for A and ε > 0, then a spectral section

Q for A can be chosen so that ‖Q − P‖∞ < ε and Q is homotopic to P as a

generalized spectral section.

Proof. ((1) ⇒ (2)) is trivial.

((2) ⇔ (3)) follows from Theorem 3.2.

((2) ⇒ (1)) and the last part of the theorem follow from Theorem 4.1. Indeed,

if ε > 0 and P is a generalized spectral section for A, then the map

x �→ ϕε(Ax,Px) =: (Ax,Qx, rx)

defines an r-spectral section Q for A. Moreover, ‖Qx−Px‖<ε for every x ∈ X.
Since ι ◦ ϕε and IdG are vertically homotopic, Q and P are homotopic as gen-

eralized spectral sections. This completes the proof of the theorem.



16 M. PROKHOROVA Isr. J. Math.

Remark 4.5: For a self-adjoint family Ax parametrized by points of a compact

space X, Melrose and Piazza showed in [MP1, Proposition 2] that if the set

of spectral sections for A is non-empty, then it contains “arbitrary small” and

“arbitrary large” spectral sections, in the following sense: for every given s ∈ R,

there are spectral sections P and Q such that Px � Sx � Qx for every x ∈ X,
where Sx = �[s,+∞)(Ax). This property is no longer true in the general case of

a non-compact base space, as the following simple example shows.

Example 4.6: Fix A ∈ Rsa
K (H) and consider the family Ax = A+x parametrized

by real numbers x ∈ X = R. The family A admits a spectral section. Indeed,

the constant map taking every x ∈ X to �[0,+∞)(A) is an r-spectral section

for A, where r : X→ R+ is an arbitrary function satisfying condition r(x) > |x|.

Suppose now that A is unbounded from above. Then, for any given s ∈ R, A

has no spectral section P dominated by the family S = (Sx) as above. Indeed,

suppose that P : X→ P(H) is such a spectral section. Then

Px � �[s,+∞)(A + x) = �[s−x,+∞)(A).

For x�s, let P ′
x be the restriction of Px to the rangeH ′ of �[0,+∞)(A). Then (P ′

x)

is a continuous one-parameter family of projections inH ′ parametrized by points

of the ray (−∞, s]. The kernels of P ′
x are finite-dimensional; by continuity, their

dimensions should be independent of x. On the other hand, the dimension

of Ker(P ′
x) is bounded from below by the rank of �[0,s−x)(A), which goes to

infinity as x → −∞. This contradiction shows that such a spectral section P

does not exist.

A similar argument shows that if A is unbounded from below, then A has no

spectral section dominating the family S.

5. Trivializing operators

Melrose and Piazza showed in [MP1, Lemma 8] that if a self-adjoint family A

over a compact base space admits a spectral section P, then A admits a finite

rank correction C to an invertible family A ′ = A + C such that P is the family

of positive spectral projections for A ′. They also proved a Z2-graded analog

of this result in [MP2, Lemma 1]. Their proofs are based on the existence
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of “arbitrarily small” and “arbitrarily large” spectral sections in the sense of

Remark 4.5. However, for a non-compact base space there may be no such

spectral sections, as Example 4.6 shows. In this section we generalize [MP1,

Lemma 8] to arbitrary base spaces using a different method. A generalization

of [MP2, Lemma 1] will be given in the next section.

Trivializing operators. Following [LP, Definition 2.11], we use the term

“trivializing operator” for operators introduced by Melrose and Piazza.

Let A be a self-adjoint regular operator with compact resolvents. We say

that a self-adjoint operator C of finite range is an r-trivializing operator (or

simply a trivializing operator) for A if the sum A+C is invertible and the range

of C lies in the range of �(−r,r)(A).

Obviously, if C is an r-trivializing operator for A, then

(5.1) P = �[0,+∞)(A + C)

is an r-spectral section for A. We say that a trivializing operator C agrees with

a spectral section P if (5.1) holds.

These notions are generalized to the family case in a natural way. We say

that a norm continuous family C : X → Bsa(H) is a trivializing family for

A : X→ Rsa
K (H) if there is a continuous function r : X→ R+ such that Cx is an

rx-trivializing operator for Ax for every x ∈ X. We also call such a family C an

r-trivializing family for A. We say that a trivializing family C agrees with a

spectral section P if

Px = �[0,+∞)(Ax + Cx)

for every x ∈ X.

Trivializing operators and spectral sections. Let T be the subspace

of rRsa
K (H) × Bsa(H) × R+ consisting of triples (A,C, r) such that C is an r-

trivializing operator for A.

Recall that S denotes the subspace of rRsa
K (H) × P(H) × R+ consisting of

triples (A,P, r) such that P is an r-spectral section for A. There is the natural

map

(5.2) τ : T → S, τ(A,C, r) = (A,P, r), where P = �[0,+∞)(A + C).
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Proposition 5.1: The map (5.2) is continuous.

Proof. The map S : T → P(H) taking (A,C, r) to �(−λ,λ)(A) is continuous on

Tλ = {(A,C, r) ∈ T | ±λ ∈ Res(A) and r < λ}.

The positive spectral projection P of A + C can be written as an orthogonal

sum

P=�[0,+∞)(SAS+C) + �[λ,+∞)(A) = �[0,+∞)(SAS+C−(1− S)) + �[λ,+∞)(A).

The operator SAS+C−(1−S) is bounded, invertible, and depends continuously

on (A,C, r) ∈ Tλ. Therefore, P depends continuously on (A,C, r) ∈ Tλ. Since

the open sets Tλ cover T, the map (5.2) is continuous.

Convexity. The fiber τ−1(A,P, r) can be identified with a subset of Bsa(H),

{C ∈ Bsa(H) | τ(A,C, r) = (A,P, r)}.

Proposition 5.2: Under this identification, every fiber of τ is a convex subset

of Bsa(H).

Proof. Let C0,C1 ∈ τ−1(A,P, r) and Ct = (1− t)C0 + tC1, t ∈ [0, 1]. Then the

range of Ct lies in the range of �(−r,r)(A). Both A + C0 and A + C1 commute

with P, so the sum A+Ct = (1− t)(A+C0)+ t(A+C1) also commutes with P.

By the same reasoning, A+Ct is strictly positive on the range of P and strictly

negative on the kernel of P. Therefore, Ct is an r-trivializing operator for A

which agrees with P, that is, (A,Ct, r) ∈ τ−1(A,P, r) for every t ∈ [0, 1].

Theorem 5.3: The bundle τ : T → S is shrinkable (that is, fiber homotopy

equivalent to the trivial bundle S → S). Moreover, a section

(5.3) (A,P, r) �→ (A,γ(A,P, r), r)

of τ can be chosen so that ‖γ(A,P, r)‖ < 2r for every (A,P, r) ∈ S.

Proof. If τ has a section, say (5.3), then the composition of this section with τ

is fiber homotopic to the identity map IdT by Proposition 5.2, via the linear

homotopy ht(A,C, r) = (A,Ct, r),

Ct = (1− t) · γ(τ(A,C, r)) + t · C.
Therefore, we only need to prove the second statement of the theorem.
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Let us fix a continuous function ψ : R → [0, 1] which is equal to 1 on (−∞, 0]

and to 0 on [1,+∞). Our construction of the map γ : S → Bsa(H) depends on

the choice of such a function ψ.

Let (A,P, r) ∈ S. We take Q = 1 − P, A+ = PAP, and A− = QAQ. The

operators r+A+ and r−A− are positive and invertible, and the sum A+ +A−

is orthogonal. The difference

(5.4) C′ = (A+ +A−) −A = −PAQ−QAP

is a self-adjoint operator of norm less than r with the range of C′ lying in the

range H◦ of �(−r,r)(A). Let

(5.5) C+=Pψ(r−1A+)P, C−=−Qψ(−r−1A−)Q, and C′′=r(C++C−).

The range of C′′ lies in H◦ and ‖C′′‖ � r, so the range of C = C′ + C′′ lies in
H◦ and ‖C‖ < 2r.

We define γ by the formula γ(A,P, r) = C = C′ + C′′, where C′ and C′′ are
defined by formulas (5.4) and (5.5).

The function Ψ(t) = t+ψ(t) is strictly positive on (−1,+∞). The sum A+C

can be written as

A + C = (A+ +A−) + r(C+ + C−) = r P Ψ(r−1A+)P − rQΨ(−r−1A−)Q,

so it is invertible and �[0,+∞)(A + C) = P.

It remains to show that γ is continuous. For λ > 0, let

Sλ = {(A,P, r) ∈ S | ±λ ∈ Res(A) and r < λ}.

The projection S = �(−λ,λ)(A) and the cut-off operator

B = SAS = f−1(Sf(A)S) ∈ Bsa(H)

depend continuously on (A,P, r) ∈ Sλ. The projections S and P commute,

so C′ = SC′S = PBQ+QBP, and thus the restriction of C′ to Sλ is continuous.

The restriction of C′′ to Sλ can be written in a similar manner:

C′′ = r S[Pψ(r−1PBP)P −Qψ(−r−1QBQ)Q]S,

which provides continuity of C′′ on Sλ. Open sets Sλ cover S when λ runs R+, so

both C′ and C′′ are continuous on the whole S. Therefore, the sum γ = C′+C′′

is also continuous. This completes the proof of the second statement of the

theorem.
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Theorem 5.4: Let X be an arbitrary topological space and A : X → Rsa
K (H)

be a Riesz continuous map. Suppose that A admits an r-spectral section P.

Then A admits an r-trivializing family C : X→ Bsa(H) that agrees with P and

satisfies ‖Cx‖ < 2rx.

Proof. Let γ : S → Bsa(H) be a map satisfying the conditions of Theorem 5.3.

Then the formula Cx = γ(Ax,Px, rx) determines an r-trivializing family for A

satisfying the conditions of the theorem.

Theorem 5.5: Let P be a spectral section for a Riesz continuous map

A : X→ Rsa
K (H). Then the space of all trivializing families for A that agree

with P is convex and therefore contractible.

Proof. Let Ci be an ri-trivializing family for A, i = 0, 1. Then both C0 and C1

are r-trivializing families for A, where r = max(r0, r1). By Proposition 5.2, for

every t ∈ [0, 1], C = (1− t)C0+ tC1 is an r-trivializing family for A as well. This

completes the proof of the theorem.

6. Z2-graded case

Throughout this section H = H0 ⊕ H1 will be a Z2-graded Hilbert space.

Let σ = ( 1 0
0 −1 ) ∈ B(H) be the symmetry defining the grading. We denote

by R1
K(H) the subset of Rsa

K (H) consisting of odd operators, that is, operators

anticommuting with σ. Similarly, we denote by B1(H) the subspace of Bsa(H)

consisting of odd operators.

Spectral sections for odd operators. The natural inclusion

R1
K(H) ↪→ Rsa

K (H) admits a spectral section P : R1
K(H) → P(H). Indeed, fix a

continuous even function ψ : R → R supported on [−r, r] which does not vanish

at zero. For everyA ∈ R1
K(H), the self-adjoint finite rank operator CA = σψ(A)

is r-trivializing for the operator A, since (A+CA)
2 = A2 +ψ(A)2 is invertible.

Therefore, PA = �[0,+∞)(A + CA) is an r-spectral section for A. Moreover, the

maps A �→ CA and A �→ PA are continuous on R1
K(H) and thus determine an r-

trivializing family and an r-spectral section for the inclusion R1
K(H) ↪→ Rsa

K (H).

It follows that, by a trivial reason, every family of odd self-adjoint operators

with compact resolvents has a spectral section. Hence the notion of a spectral

section is not very relevant for such operators. Instead, one should consider

spectral sections behaving well with respect to the grading. Such a notion of

a Cl(1) spectral section was introduced by Melrose and Piazza in [MP2].
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Cl(1) spectral sections.A norm continuous family of projections P :X→P(H)

is called a Cl(1) spectral section for a family A : X → R1
K(H) if P is a spectral

section for A and satisfies additionally the anticommutation property

(6.1) σPσ−1 = 1− P.

Let P1(H) denote the subspace of P(H) consisting of projections P satisfy-

ing (6.1). Equivalently, a projection P lies in P1(H) if the symmetry 2P − 1

anticommutes with σ.

P1(H) is naturally homeomorphic to the space of unitary operatorsU(H0,H1);

the corresponding homeomorphism

(6.2) ν : P1(H) → U(H0,H1)

takes P ∈ P1(H) to v ∈ U(H0,H1) such that 2P − 1 = ( 0 v∗
v 0 ).

Generalized Cl(1) spectral sections. Again, we consider two cases in

parallel:

(1) Z = rRsa
K (H), Z ′ = rRK(H

0,H1), and I = R+;

(2) Z = Bsa
eu(H), Z

′ = Beu(H
0,H1), and I = (0, 1).

Let Z1 denote the subspace of Z consisting of odd operators. The formula

(6.3) A �→ Â =

(
0 A∗

A 0

)

defines a natural homeomorphism Z ′ → Z1.

Both Z ′ and Z1 are empty if one of Hi is finite-dimensional (recall that H

itself is infinite-dimensional). So we will always suppose that both H0 and H1

are infinite-dimensional.

We define a generalized Cl(1) spectral section for Â : X→ Z1 as a gener-

alized spectral section P for Â satisfying (6.1). Equivalently, a norm continuous

map P : X → P1(H) is a generalized Cl(1) spectral section for Â if ax is a

compact deformation of the unitary ν(Px) for every x ∈ X, where
ax = Ax for Z = Bsa

eu(H),

ax = f(Ax) for Z = Rsa
K (H).

An element a ∈ Beu(H
0,H1) is a compact deformation of a unitary if and

only if the index of a vanishes. For A ∈ RK(H
0,H1) the indices of A and f(A)

coincide. Therefore, the index of A ∈ Z ′ vanishes if and only if the operator Â
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given by formula (6.3) admits a generalized Cl(1) spectral section. We denote

by Z̄ ′ the subspace of Z ′ consisting of operators with vanishing index and by Z̄1

the subspace of Z1 consisting of operators admitting a generalized Cl(1) spectral

section.

Since the index is locally constant on Beu(H
0,H1) and thus also on

rRK(H
0,H1), Z̄ ′ is an open and closed subspace of Z ′ (in fact, it is a connected

component of Z ′, but we do not use its connectedness). Homeomorphism (6.3)

takes Z̄ ′ to Z̄1, so Z̄1 is an open and closed subspace of Z1.

Proposition 6.1: For every A ∈ Z ′, the following four conditions are equiva-

lent:

(1) The index of A vanishes.

(2) The signature of the restriction of σ to the kernel of Â vanishes.

(3) Â has a Cl(1) spectral section.

(4) Â has a generalized Cl(1) spectral section.

Proof. ((3) ⇒ (4)) is trivial.

((1) ⇔ (4)) is explained above.

((1) ⇔ (2)) follows from the equality

sign(σ|Ker Â) = dim(H0 ∩Ker Â) − dim(H1 ∩Ker Â)

= dim(KerA) − dim(KerA∗) = ind(A).

((1) ⇒ (3)) If dimKerA = dimKerA∗, then there is a unitary

v ∈ U(KerA, KerA∗). Let S ∈ P(H) be the orthogonal projection onto the

kernel of Â and P0 = ( 0 v∗
v 0 ) ∈ P(Ker Â). Then P = P0S+ �(0,+∞)(Â) is a Cl(1)

spectral section for Â.

Proposition 6.2: For everyA ∈ Z1 and r ∈ I, the signatures of the restrictions
of σ to Ker(A) and to the range of �(−r,r)(A) coincide.

Proof. The range V of �(−r,r)(A) can be decomposed into the orthogonal sum

V = V− ⊕Ker(A)⊕ V+ corresponding to the decomposition of the interval

(−r, r) = (−r, 0) ∪ {0} ∪ (0, r).

Since σ anticommutes with A, σ takes V− to V+ and vice versa. Therefore,

the signature of the restriction of σ to V−⊕V+ vanishes, and so the signatures

of σ|V and σ|Ker(A) coincide.
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Homotopy lifting property. Let G1 denote the subspace of Z1 × P1(H)

consisting of pairs (A,P) such that P is a generalized spectral section for A.

Recall that Z̄1 denotes the subspace of Z1 consisting of operators admitting

a generalized Cl(1) spectral section; in other words, Z̄1 is the range of the

map πG : G
1 → Z1 taking (A,P) to A. Let

UK(H
0) = {u ∈ U(H0) | u− 1 ∈ K(H0)}

be the group of unitaries which are compact deformation of the identity.

Theorem 6.3: The map πG : G
1 → Z1 is a locally trivial principal UK(H

0)-

bundle. Both G1 → Z̄1 and G1 → Z1 have the Homotopy Lifting Property for

all spaces.

Proof. We define the action μ of UK(H
0) on the product Z̄1 × P1(H) by the

formula

μu(A,P) = (A, ν−1(ν(P)u)), u ∈ UK(H
0),

where ν : P1(H) → U(H0,H1) is homeomorphism (6.2). For every P,P ′ ∈ P1(H),

P−P ′ ∈ K(H) is equivalent to ν(P)−ν(P ′) ∈ K(H0,H1), which in turn is equiv-

alent to ν(P ′)−1ν(P) − 1 ∈ K(H0). Therefore, G1 is fixed by the action of μ,

and μ acts transitively on the fibers of G1 → Z̄1. Obviously, this action is free.

It follows that G1 → Z̄1 is a principal UK(H
0)-bundle.

The next step of the proof is local triviality of G1 → Z̄1. Since this bundle

is principal, it is sufficient to show that it allows a local section over a neigh-

borhood of an arbitrary point A0 ∈ Z̄1. Fix r > 0 such that ±r ∈ Res(A0).

Let S◦r(A) and S+r (A) be the projections defined by formulae (4.1). They are

continuous on the neighborhood Vr = {A ∈ Z̄1 | ±r ∈ Res(A)} of A0. The

projections 1±σ
2 S◦r(A) are also continuous on Vr, so their ranges are locally

trivial vector bundles over Vr. Let V ⊂ Vr be a neighborhood of A0 over

which these two vector bundles are trivial; denote their restrictions to V by E+

and E−. The ranks of E+ and E− are equal to the dimensions of their fibers

over A0; since A0 ∈ Z̄1, these ranks coincide. Choose a unitary bundle iso-

morphism v : E+ → E−. Let T = ( 0 v∗
v 0 ) be the corresponding odd symmetry

and P = (T + 1)/2 ∈ P(E+ ⊕ E−) the bundle projection. Then the formula

A �→ (A, P(A)S◦r(A) + S
+
r (A))

defines a section of G1 over V . This completes the proof of the second step.
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The same reasoning as in the end of the proof of Theorem 3.1 shows that a

locally trivial bundle G1 → Z̄1 has the Homotopy Lifting Property for all spaces.

Since Z̄1 is closed and open in Z1, the same is true for G1 → Z1. This completes

the proof of the theorem.

Theorem 6.4: Let X be an arbitrary topological space and Z be either rRsa
K (H)

or Bsa
eu(H). Let A : X → Z1 be a continuous map. Then the following two

conditions are equivalent:

(1) A has a generalized Cl(1) spectral section.

(2) A is homotopic, as a map from X to Z1, to a family of invertible oper-

ators.

Proof. The proof reproduces completely the proof of Theorem 3.2, with (gen-

eralized) spectral sections replaced by (generalized) Cl(1) spectral sections and

Theorem 6.3 used instead of Theorem 3.1. The only additional care is needed

for the choice of a compact operator K: it should commute with σ. Then T ′(x)
is odd and the homotopy h consists of odd operators.

Fiber homotopy equivalence. From now on till the end of the section Z

denotes the space R1
K(H) equipped with the Riesz topology. Let S1 denote the

subspace of S consisting of triples (A,P, r) such that A is odd and P is a Cl(1)

spectral section for A with a cut-off parameter r. Restricting πS to S1, we

obtain a fiber bundle πS : S
1 → Z̄1.

Theorem 6.5: The bundle map ι : S1 → G1 taking (A,P, r) to (A,P) is a fiber

homotopy equivalence over Z̄1. Moreover, for every ε > 0, a fiber-homotopy

inverse bundle map ϕ = ϕε : G
1 → S1 can be chosen so that ‖Q − P‖ < ε for

every (A,P) ∈ G1 and (A,Q) = ι ◦ϕ(A,P).
Proof. We will show that the bundle map ϕ from the proof of Theorem 4.1

maps the subspace G1 of G to the subspace S1 of S, and that the restriction of ϕ

to G1 is fiber homotopy inverse to ι : S1 → G1.

We use the designations from the proof of Theorem 4.1. It will be convenient

to use the following convention: if B is a self-adjoint operator, then we write B̃

as an abbreviation for 2B− 1. We will also use the “sign function”

ρ : R \ {0} → {−1, 1}, ρ = �(0,+∞) −�(−∞,0) .
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Let (A,P) be an arbitrary element of G1. Equality (4.2) can be written

equivalently as

T̃r(A,P) = (S+r (A) − S
−
r (A)) + S

◦
r(A) P̃ S

◦
r(A).

Since A and P̃ are odd, T̃r(A,P) is also odd. It follows that T̃(A,P)

and Q̃(A,P) = ρ(T̃ (A,P)) are odd. Therefore, ϕ takes G1 to S1.

Formula (4) can be written as 2[P,Q]t − 1 = ρ((1 − t)P̃ + tQ̃). Therefore,

all the homotopies constructed in the proof of Lemma 4.3 preserve P1(H), and

thus the restriction of ϕ to G1 is fiber homotopy inverse to the restriction of ι

to S1. This completes the proof of the theorem.

Theorem 6.6: Let X be an arbitrary topological space and A : X→ R1
K(H) be

a Riesz continuous map. Then the following three conditions are equivalent:

(1) A has a Cl(1) spectral section.

(2) A has a generalized Cl(1) spectral section.

(3) A is homotopic, via a Riesz continuous homotopy X× [0, 1] → R1
K(H),

to a family of invertible operators.

If P is a generalized Cl(1) spectral section for A and ε > 0, then a Cl(1) spectral

section Q for A can be chosen so that ‖Q− P‖∞ < ε and Q is homotopic to P

as a generalized Cl(1) spectral section.

Proof. ((1) ⇒ (2)) is trivial.

((2) ⇔ (3)) follows from Theorem 6.4.

((2) ⇒ (1)) and the last part of the theorem follow from Theorem 6.5, in the

same manner as in the proof of Theorem 4.4.

Trivializing operators. Recall that in the previous section we denoted by T

the subspace of rRsa
K (H)×Bsa(H)×R+ consisting of triples (A,C, r) such that C

is an r-trivializing operator for A. Let T1 be the subspace of T consisting of

triples (A,C, r) with A and C odd operators. In other words, T1 is the subspace

of rR1
K(H) × B1(H) × R+ consisting of triples (A,C, r) such that C is an r-

trivializing operator for A.

If (A,C, r) ∈ T1, then P = �[0,+∞)(A + C) is a Cl(1) spectral section for A.

Therefore, the restriction of τ : T → S to T1 defines a natural projection

τ : T1 → S1.
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Theorem 6.7: The bundle τ : T1 → S1 is shrinkable. Moreover, its section

(A,P, r) �→ (A,γ(A,P, r), r)

can be chosen so that ‖γ(A,P, r)‖ < 2r for every (A,P, r) ∈ S.

Proof. Let γ : S → Bsa(H) be the map constructed in the proof of Theorem 5.3.

Then γ takes S1 to B1(H) and thus defines a section satisfying the conditions

of the theorem. Indeed, if A is odd and P is a Cl(1) spectral section for A,

then the conjugation by σ takes A+ to −A− and vice versa. Therefore, both C′

and C′′ are odd, and thus C = C′ + C′′ is also odd for every (A,P, r) ∈ S1. It

follows that γ satisfies the second condition of the theorem.

By the same reasoning as in the proof of Theorem 5.3, the composition of

any section of T1 → S1 with τ is fiber homotopic to the identity map IdT1 via

the linear homotopy, and thus the bundle T1 → S1 is shrinkable.

Theorem 6.8: Let X be an arbitrary topological space and A : X→ R1
K(H) be

a Riesz continuous map. Suppose that A admits a Cl(1) spectral section P with

a cut-off function r. Then A admits an odd r-trivializing family C : X→ B1(H)

that agrees with P and satisfies

‖Cx‖ < 2rx.

Proof. Let γ : S1 → B1(H) be a map satisfying the conditions of Theorem 6.7.

Then the formula

Cx = γ(Ax,Px, rx)

determines an odd r-trivializing family for A satisfying the conditions of the

theorem.

Theorem 6.9: Let P be a Cl(1) spectral section for a Riesz continuous map

A : X→ R1
K(H). Then the space of all odd trivializing families for A that agree

with P is convex and therefore contractible.

Proof. This space is the intersection, inside the vector space C(X,Bsa(H)), of

the vector subspace C(X,B1(H)) with the subset of all trivializing families for A.

The last subset is convex by Theorem 5.5, so their intersection is also convex.
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Non-self-adjoint operators. Passing from odd self-adjoint operators to

their chiral components, we obtain the following result.

Theorem 6.10: Let X be an arbitrary topological space and A : X → RK(H)

be a Riesz continuous map. Then the following two conditions are equivalent:

(1) The bounded transform f ◦A is a compact deformation of a norm con-

tinuous family of unitaries.

(2) A is Riesz homotopic to a family of invertible operators.

If this is the case, then there is a norm continuous family C = (Cx) of finite

rank operators such that Ax + Cx is invertible for every x ∈ X, the range of Cx

lies in the range of �[0, rx)(AxA
∗
x), and the kernel of Cx contains the range

of �[rx,+∞)(A
∗
xAx) for some continuous function r : X→ R+ .

Proof. The first part of the theorem is equivalent to the part ((2) ⇔ (3)) of

Theorem 6.6 applied to the family Â = ( 0 A∗
A 0 ) of regular odd self-adjoint

operators with compact resolvents.

Suppose now that A is Riesz homotopic to a family of invertible operators.

Then, by Theorem 6.6, Â has a Cl(1) spectral section; let R : X → R+ be

its cut-off function. Applying Theorem 6.8 to Â, we get a norm continuous

family Ĉ = ( 0 C∗
C 0 ) of odd self-adjoint operators such that Â + Ĉ is invertible

and the range of Ĉ lies in the range of �(−R,R)(Â) (we omit the subscript x for

brevity). Since

�(−R,R)(Â) = �[0,R2)(Â
2) = �[0,R2)(A

∗A⊕AA∗),

the family C and the function r =
√
R satisfy the conditions of the theorem.

Part 2. Special cases

In this part we present a number of special cases of general results obtained in

the first part of the paper.

7. Relatively compact deformations

Let H and H ′ be Hilbert spaces.

Deformations of a single operator. We give here only two of possible

examples. Clearly, one can write a Z2-analog of Theorem 7.2, using Theo-

rems 6.6 and 6.8 instead of Theorems 4.4 and 5.4; we omit it since it is quite

straightforward.
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Theorem 7.1: For a regular operator B : H→ H ′ with compact resolvents, let

ZB = {A ∈ RK(H,H
′) | f(A) − f(B) ∈ K(H,H ′)}.

Then there are Riesz-to-norm continuous maps α : ZB → B(H,H ′) and

r : ZB → R+ such that A+α(A) is invertible, the range of α(A) lies in the range

of �[0, rx)(AA
∗), and the kernel of α(A) contains the range of �[rx,+∞)(A

∗A)
for every A ∈ ZB.

Proof. The bounded transform f(B) is a compact deformation of some unitary

u ∈ U(H,H ′). Therefore, the composition of the bounded transform with the

inclusion ZB ↪→ RK(H,H
′) is a compact deformation of a norm continuous (even

constant!) family of unitaries ZB�A �→u. It remains to apply Theorem 6.10.

Theorem 7.2: For a regular self-adjoint operator B ∈ Rsa
K (H) with compact

resolvents, let

(7.1) Zsa
B = ZB ∩ Rsa

K (H) = {A ∈ Rsa
K (H) | f(A) − f(B) ∈ K(H)} ⊂ Rsa

K (H)

be the subspace of Rsa
K (H) equipped with the Riesz topology. Let P = �[0,+∞)(B)

be the positive spectral projection of B. Then inclusion (7.1) admits both a

spectral section and a trivializing family. Moreover, for every ε > 0 a spectral

section Q can be chosen so that ‖Q(A) − P‖ < ε for every A ∈ Zsa
B .

Proof. The constant map A �→ P is a generalized spectral section for inclu-

sion (7.1). It remains to apply Theorems 4.4 and 5.4.

Essentially self-adjoint operators. Recall that a bounded operator a is

called essentially self-adjoint if a− a∗ is a compact operator.

Theorem 7.3: Let X be the subspace of RK(H) consisting of operatorsA whose

bounded transform is an essentially self-adjoint operator. Then there are Riesz-

to-norm continuous maps α : X→ B(H) and r : X→ R+ such that A + α(A) is

invertible, the range of α(A) lies in the range of �[0,rx)(AA
∗), and the kernel

of α(A) contains the range of �[rx,+∞)(A
∗A) for every A ∈ X.

Proof. Let A ∈ X and a = f(A). Then b = (a+a∗)/2 is a self-adjoint operator

of norm � 1 and u = uA = b+ i
√
1− b2 is a unitary. Moreover, both b and u

are compact deformations of a. The map X → U(H) taking A to uA is Riesz-

to-norm continuous. Therefore, the composition of the bounded transform with

the embedding X ↪→ RK(H) is a compact deformation of a norm continuous

family of unitaries. It remains to apply Theorem 6.10.
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Essentially odd operators. Let H be a Z2-graded Hilbert space, with the

grading given by the symmetry σ. A bounded operator a ∈ B(H) is called

essentially odd if σa+ aσ is a compact operator.

Theorem 7.4: Let X be the subspace of rRsa
K (H) consisting of operators A

whose bounded transform is an essentially odd operator. Then the natural

embedding X ↪→ rRsa
K (H) admits both a spectral section X → P(H) and a

trivializing family X→ Bsa(H).

Proof. Let A ∈ X and a = f(A). Then b = (a − σaσ)/2 is an odd self-adjoint

operator of norm � 1, u = b+σ
√
1− b2 is a symmetry, and P = PA = (u+1)/2

is a projection. Moreover, both b and u are compact deformations of a. The

map X → P(H) taking A to PA is Riesz-to-norm continuous. Therefore, this

map is a generalized spectral section for the embedding X ↪→ rRsa
K (H). It

remains to apply Theorems 4.4 and 5.4.

8. Pseudodifferential operators

We show here several examples of applications of our results to pseudodifferen-

tial operators over closed manifolds. Again, we omit the Z2-graded case here.

LetM be a closed smooth manifold equipped with a smooth positive measure,

and let E, E ′ be smooth Hermitian bundles over M. Let Ψd(E,E
′) denote the

space of pseudodifferential operators of order d � 0 acting from sections of E

to sections of E′. We equip it with the topology induced by the inclusion

Ψd(E,E
′) ↪→ B(L2d(M;E), L2(M;E ′))×B(L2d(M;E ′), L2(M;E))

taking a pseudodifferential operator A to the pair (A,At), where At is the oper-

ator formally adjoint to A and L2d(M;E) is the order d Sobolev space of sections

of E. The natural inclusion of the subspace Ψell
d (E,E ′) ⊂ Ψd(E,E

′) of elliptic

operators to R(L2(M;E), L2(M;E ′)) is Riesz continuous (see, for example, [Le,

Proposition 2.2]).

Theorem 8.1: Let X be a topological space and A : X → Ψell
d (E,E ′) be a

continuous family of elliptic operators of order d � 1. Suppose that A is

homotopic to a family of invertible operators. Then there is a norm contin-

uous family α = (αx,B) of smoothing finite rank operators parametrized by

pairs (x,B) ∈ X × Ψd−1(E,E
′) such that Ax + B + αx,B is invertible for ev-

ery x ∈ X and every B ∈ Ψd−1(E,E
′).
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Remark 8.2: In this theorem, A is homotopic to a family of invertible operators,

in particular, in each of the following cases:

(1) X is contractible.

(2) X is compact and ind(A) = 0 ∈ K0(X).

(3) The kernel and cokernel of Ax have locally constant ranks, and the cor-

responding vector bundles Ker(A) and Coker(A) over X are isomorphic.

Proof. Let Y = X × Ψd−1(E,E
′), H=L2(M;E), and H ′ = L2(M;E ′). The

map Ã : Y → Ψell
d (E,E ′) taking (x,B) to Ax + B is continuous. Therefore, the

composed map

Ã : Y → Ψell
d (E,E ′) ↪→ RK(H,H

′)

is Riesz continuous. It is Riesz homotopic to the map Y → RK(H,H
′) tak-

ing (x,B) to Ax via the homotopy (x,B, t) �→ Ax+ tB. Since A is homotopic to

a family of invertible operators, the same is true for Ã.

By Theorem 6.10, there is a continuous map α : Y → B(H,H ′) such that Ã+α

is an invertible family, the range of αx,B lies in the range V of �[0,r)(Ãx,BÃ
∗
x,B),

and the orthogonal complement of the kernel of αx,B lies in the range V ′

of �[0, r)(Ã
∗
x,BÃx,B) for some r = r(x,B). Since Ãx,B is an elliptic operator

of positive order, both V and V ′ are spanned by a finite number of C∞-sections.

Therefore, αx,B is a smoothing operator of finite rank. This completes the proof

of the theorem.

Self-adjoint case. For M and E as above, let Ψsa
d (E) denote the subspace

of Ψd(E) consisting of symmetric operators, and let

Ψ
ell,sa
d (E) = Ψell

d (E) ∩ Ψsa
d (E).

Theorem 8.3: Let X be a topological space and A : X → Ψ
ell,sa
d (E,E ′) be a

continuous family of symmetric elliptic operators of order d � 1. Suppose

that A is homotopic to a family of invertible operators. Then the map

Ã : Y = X× Ψsa
d−1(E) → Ψ

ell,sa
d (E), (x,B) �→ Ax + B

admits both a spectral section P : Y → Ψsa
0 (E) and a trivializing family with

smoothing trivializing operators.

Proof. The proof is completely similar to the proof of Theorem 8.1; one only

needs to use Theorems 4.4 and 5.4 instead of Theorem 6.10.
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Remark 8.4: In this theorem, A is homotopic to a family of invertible operators,

in particular, in each of the following cases:

(1) X is contractible.

(2) X is compact and ind(A) = 0 ∈ K1(X).

(3) The kernel of Ax has locally constant rank.

9. Cobordism theorems

Let N be a smooth compact Riemannian manifold with non-empty bound-

ary M = ∂N and F, F′ be smooth Hermitian vector bundles over M. Denote

by E and E ′ the restrictions of F and F′ to M.

Calderón projection. Let D be a first order elliptic differential operator

over N acting from sections of F to sections of F′. The space of Cauchy data

of D is the closure in H = L2(M;E) of the subspace consisting of restrictions

to M of all smooth solutions of the equation Du = 0. The orthogonal projec-

tion Q = Q(D) ∈ P(H) onto the Cauchy data space is called the (orthogonal)

Calderón projection of D; it is a pseudodifferential operator of zeroth order.

At the points of the boundary the operator D can be written as

(9.1) D = −iJ(∂z +A),

where z is the normal coordinate, J is the conormal symbol of D (a bundle

isomorphism from E to E ′), and A is a first order elliptic differential operator

over M acting on sections of E. Such an operator A is called the tangential

operator of D along the boundary, or simply the boundary operator

of D.

Suppose that the principal symbol of A is self-adjoint, that is A − At is a

bundle endomorphism (here At denotes the operator formally adjoint to A).

Then the Calderón projection Q(D) has the same principal symbol as the posi-

tive spectral projection �[0,+∞)(A+At). In other words, Q(D) is a generalized

spectral section for the symmetrized tangential operator Ã = (A+At)/2, or for

any other symmetric operator on E with the same principal symbol as A.

Remark 9.1: Near the boundary, any first order operator D can be written in

the form

(9.2) D = −iJ(z)(∂z + A(z))
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where (J(z)) and (A(z)) are one-parameter families of bundle endomorphisms

and of differential (tangential) operators respectively, which depend on the pa-

rameter z. Expression (9.1) should be understood as the restriction of (9.2) to

the boundary z = 0. In other words, J and A in (9.1) are just the boundary

values of J(z) and A(z) at z = 0.

In the studies of boundary value problems, the operatorD is often required to

have a product form near the boundary, which means that both J(z) and A(z)

are actually independent of z. Since the homotopy methods that we use in

this paper are insensitive to continuous perturbations, we do not need this

requirement. We do not require the product form of the operator near the

boundary, neither do we require the product form of the metric.

General cobordism theorem. The following result is the most general form

of a cobordism theorem based on Calderón projections. Below we apply The-

orem 9.2 to Dirac type operators, for which continuous dependence of the

Calderón projection on parameter is known.

Theorem 9.2: Let N, F, and F′ be as above, X be an arbitrary topologi-

cal space, D = (Dx)x∈X be a family of first order elliptic differential opera-

tors Dx : C
∞(N; F) → C∞(N; F′), and Ax be the boundary operator of Dx. Sup-

pose that the principal symbol of each Ax is self-adjoint and that the Calderón

projection Q(Dx) depends continuously on x. Let Ã = (Ãx) be a continuous

family of first order symmetric operators overM, with Ãx having the same prin-

cipal symbols as Ax. Then Ã admits both a spectral section and a trivializing

family, with smoothing trivializing operators.

Proof. The Calderón projection Qx = Q(Dx) is a generalized spectral section

for Ãx. The norm continuous family (Qx) of projections is a generalized spectral

section for a Riesz continuous family Ã. It remains to apply Theorems 4.4

and 5.4. Since the range of every trivializing operator lies in the span of a finite

number of C∞-sections (namely, eigenfunctions of Ãx), all trivializing operators

are smoothing.

Continuity of Calderón projections. There are different criteria of con-

tinuity of the family of Calderón projections for different classes of operators.

One such criterion is [BLZ, Corollary 7.4]. However, this criterion uses a spe-

cific metric on the space of operators (“strong metric” of [BLZ, Definition 7.1]),
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which makes it difficult for use in applications. We prefer to use another cri-

terion, which is proven by Booss-Bavnbek, Deng, Zhou, and Zhu in [BDZZ].

Unfortunately, loc. cit. does not contain the exact statement we need, so we

state it here explicitly.

Recall that a first order operator D is said to have the weak inner Unique

Continuation Property (weak inner UCP) if the only inner solution (that is,

a solution vanishing on the boundary) of the equation Du = 0 is the trivial

solution u = 0.

Proposition 9.3 ([BDZZ]): Let N, F, and F′ be as above, X be a topological

space, and D = (Dx)x∈X be a family of first order elliptic differential opera-

tors Dx : C
∞(N; F) → C∞(N; F′). Suppose that the following two conditions

hold:

(1) The coefficients of the operators Dx and Dt
x, together with the first

derivatives of the conormal symbol of Dx in the tangential directions,

depend continuously on x in every local chart of N.

(2) All the operators Dx and Dt
x have weak inner UCP (or, more generally,

the dimensions of the spaces of inner solutions of Dxu = 0 and Dt
xu = 0

do not depend on x ∈ X).
Then the family of Calderón projections x �→ Q(Dx) ∈ P(L2(M;E)) is norm

continuous.

Proof. The main theorem of [BDZZ], Theorem 1.2, is stated for operators of

order d in the following form: if its conditions (i) and (ii) hold for every s � d/2,
then the family of orthogonal Calderón projections (Qx) is continuous in the

operator norms of all the Sobolev spaces Hr(M;E), r ∈ R. However, their

reasoning actually proves a stronger result: if conditions (i) and (ii) hold for

some s � d/2, then (Qx) is continuous in the operator norms of Hr(M;E) for

every r ∈ [−s, s].

We apply this stronger result to the family (Dx) with d = 1, s = 1/2,

and r = 0. Condition (ii) coincides with condition (2) of our proposition. The

operator Dx depends continuously on x in the operator norm ‖·‖1, 0, that is,

the norm on the space of bounded operators H1(N; F) → L2(N; F′). The adjoint
operator Dt

x has the analogous property. The natural inclusion

C1(Hom(M;E), Hom(M;E ′)) ↪→ B(H1/2(M;E),H1/2(M;E ′))
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is continuous, so the conormal symbol σx(n) of Dx depends continuously on x

in the operator norm ‖·‖1/2, 1/2. Therefore, condition (i) of [BDZZ, Theorem

1.2] holds in our case for s = 1/2. It follows that (Qx) is a continuous family of

projections in the operator norm of L2(M;E).

Unique Continuation Properties. Recall that an operator D over a con-

nected manifold N is said to have the weak Unique Continuation Property

(weak UCP) if any solution of the equation Du = 0 which vanishes on an open

subset of N vanishes on the whole N.

Let N be a smooth connected Riemannian manifold, not necessarily compact,

and F, F ′ be smooth Hermitian vector bundles over N. Denote by W(F, F′) the
set of first order elliptic differential operators D : C∞(N; F) → C∞(N; F′) whose
principal symbol d satisfies the following condition:

(9.3)
The fiber endomorphism id(ξ)−1d(η) ∈ End(Fx) is self-adjoint

for every pair of orthogonal cotangent vectors ξ, η ∈ T∗xM, x ∈M.

Proposition 9.4: Every D ∈ W(F, F′) has the weak Unique Continuation

Property.

Proof. We follow the line of the proof of weak UCP for perturbed Dirac type

operators in [BBB, Theorem 1.33], but write it in more detail.

We can suppose without loss of generality that N has no boundary (otherwise

replace N by N \ ∂N). Suppose that a nontrivial solution u of Du = 0 vanishes

on a non-empty open subset of N. Let V be the union of all open subsets of N

where u vanishes, and let N ′ = supp(u) 
= ∅ be the complement of V in N.

1. We claim that there is a point p ∈ V such that the injectivity radius of p

is greater than the distance from p to N ′,

inj(p) > dist(p,N ′).

To show this, choose x ∈ N ′ ∩V, and let r = inj(x). Since the injectivity radius

function is lower-semicontinuous, there is a δ ∈ (0, r/4) such that the injectivity

radius is greater than r/2 for all points of the open ball Bδ(x) = {y ∈ N |

dist(x,y) < δ}. Since x lies in the boundary of V , the intersection V ∩ Bδ(x) is

non-empty; let p be a point in this intersection. Then

dist(p,N ′) � dist(p, x) < r/4 and inj(p) > r/2.
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2. Let p ∈ V be such a point that

r = inj(p) > dist(p,N ′) = d.

Then the open ball Bd(p) is contained in V and the larger open ball Br(p) can

be equipped with (geodesical) spherical coordinates. It follows from [BB, Lem-

mata 5 and 6] that u vanishes on some intermediate ball BR(p) with d < R < r,

that is BR(p) ⊂ V . On the other hand, the radius of BR(p) is greater than the

distance from p to N ′, so BR(p) intersects N
′. This contradiction shows that D

satisfies the weak UCP, which completes the proof of the proposition.

Dirac type operators. Recall that a first order operator D with the prin-

cipal symbol d is called a Dirac type operator if

d(ξ)∗d(ξ) = ‖ξ‖2 · Id = d(ξ)d(ξ)∗

for every ξ ∈ T∗M. Every Dirac type operator acting from sections of F to

sections of F′ is an element of W(F, F′), but not vice versa.

Proposition 9.4 can be used to prove a cobordism theorem for operators of

the class W(F, F′). However, such a result is not really more general than a

cobordism theorem for Dirac type operators. Indeed, composing D with a

bundle automorphism of F′ does not affect the boundary operator of D. The

following proposition shows that every operator D ∈ W(F, F′) can be obtained

from a Dirac type operator by such a composition.

Proposition 9.5: Let D be a first order operator acting from sections of F to

sections of F′. Then the following two conditions are equivalent:

(1) D ∈ W(F, F′),
(2) D = I ·D ′, where I is a bundle automorphism of F′ and D ′ is a Dirac

type operator.

Proof. Condition (9.3) can be equivalently written as follows:

(9.4) d(ξ)d(η)∗ + d(η)d(ξ)∗ = 0 for every ξ⊥η ∈ T∗xN, x ∈ N.

The left-hand side of (9.4) is an End(F′x)-valued symmetric bilinear form on T∗xN,

δ(ξ, η) = d(ξ)d(η)∗ + d(η)d(ξ)∗.

((2) ⇒ (1)) IfD = I·D ′, then δ(ξ, η) = 2〈ξ, η〉I I∗ satisfies (9.4), soD ∈ W(F, F′).
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((1) ⇒ (2)) Let D ∈ W(F, F′). For arbitrary non-zero ξ, η ∈ T∗xF, we

write ξ = ξ ′ + tη with ξ ′ orthogonal to η. This gives

(9.5) δ(ξ, η) = tδ(η, η) = 〈ξ, η〉S(η),
where

S(η) = δ(η, η)/‖η‖2 = 2d(η)d(η)∗/‖η‖2 ∈ End(F′x)

is a homogenous function on S∗xN\ {0} of degree 0. Since δ(ξ, η) = δ(η, ξ), iden-

tity (9.5) implies S(ξ)=S(η) for every pair of non-orthogonal vectors ξ, η∈S∗xN.

For every non-zero ξ, η ∈ T∗xN there is a third vector ζ ∈ S∗xN which is non-

orthogonal to both ξ and η, so that S(ξ) = S(ζ) = S(η). Therefore, S(η) is

independent of η ∈ S∗xN and depends only on x, S(η) = Sx. Moreover, Sx is

positive for every x ∈ N. Let Ix be the positive square root of Sx/2. Then I

is a smooth bundle automorphism of F′. The equality d(ξ)d(ξ)∗ = ‖ξ‖2IxI∗x
implies

(I−1
x d(ξ))(I−1

x d(ξ))∗ = ‖ξ‖2
for every ξ ∈ T∗xN. Since I−1

x d(ξ) is invertible for ξ 
= 0, this implies the

second identity (I−1
x d(ξ))∗(I−1

x d(ξ)) = ‖ξ‖2. Therefore, I−1D is a Dirac type

operator.

Proposition 9.6: Let N be a smooth connected Riemannian manifold with

non-empty boundary, and let D be a Dirac type operator over N. Then D has

the weak inner Unique Continuation Property.

Proof. The operator D admits an extension across the boundary, that is, D is

the restriction to N of some Dirac type operator D̃ over Ñ, where Ñ is a smooth

Riemannian manifold without boundary containing N as a smooth submanifold

of codimension zero. Indeed, let D act from sections of F to sections of F ′. The
symbol d of D determines the structure of a Clifford module over T∗N ⊕ R

on F⊕ F′, with the cotangent vector ξ acting as

d̂(ξ) =

(
0 d(ξ)∗

d(ξ) 0

)

and the unit vector in the additional R-direction acting as 1F ⊕ (−1F′). Such a

structure can be smoothly extended across the boundary of N, to an external

collar neighborhood of ∂N equipped with a metric in a compatible way. Such an

extension gives rise to the symbol d̃ of a Dirac type operator, which extends d

and acts from sections of F̃ to sections of F̃′, where F̃ and F̃′ are smooth Hermitian



Vol. TBD, 2023 SPECTRAL SECTIONS 37

vector bundles over Ñ extending F and F′ respectively. Given an extension of the

symbol, the whole operator D can be smoothly extended to Ñ using a partition

of unity.

Let u ∈ L2(N; F) be in the kernel of D and let ũ ∈ L2(Ñ; F̃) be the extension

of u to Ñ \ N by zero. Suppose that u vanishes on the boundary ∂N. Then

the Green formula for D implies that ũ is a weak solution of D̃. Since D̃ is

elliptic, ũ is smooth. By Proposition 9.4, the operator D̃ has the weak UCP.

Since D̃ũ = 0 and ũ vanishes on the open subset Ñ \ N, we get ũ ≡ 0 and

thus u = ũ|N ≡ 0. Therefore, D has the weak inner UCP.

Cobordism theorem for Dirac type operators. The boundary operator

of a Dirac type operator is again a Dirac type operator; moreover, it has a

self-adjoint principal symbol. Combining Theorem 9.2 with Propositions 9.3

and 9.6, we obtain the following result generalizing [MP1, Section 2, Corollary].

Theorem 9.7: Let X be an arbitrary topological space and D = (Dx)x∈X be

a family of Dirac type operators on a smooth compact Riemannian manifold N

such that the coefficients of Dx and Dt
x, together with the first derivatives of the

conormal symbol of Dx in the tangential directions, depend continuously on x

in every local chart of N. Then the family Ã = (Ãx) of symmetrized boundary

operators Ãx = (Ax + At
x)/2 admits both a spectral section and a trivializing

family, with smoothing trivializing operators.

Remark 9.8: While the statement of Theorem 9.7 does not distinguish between

even- and odd-dimensional manifolds N, the theorem is really interesting only

in the even-dimensional case.

If a manifold is odd-dimensional, then its boundary is a closed manifold of

even dimension. At the same time, an arbitrary family of symmetric Dirac type

operators A = (Ax) over a closed oriented manifold M of dimension 2k admits

a spectral section and a trivializing family, regardless of whether A is cobordant

to zero or not.

Indeed, let A be a symmetric Dirac type operator over M with the sym-

bol a. Let σ be the “normalized orientation”, σy = ik a(ξ1) · . . . ·a(ξ2k), where
(ξ1, . . . , ξ2k) is a positively oriented orthonormal basis of T∗yM, y ∈M. Then σ

is a bundle symmetry anticommuting with a, so Theorem 7.4 can be applied.

In more concrete terms, the operators Ā = (A − σAσ)/2 and A ′ = Ā + σ

are symmetric and have the same symbol as A. Moreover, Ā anticommutes
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with σ, so (A ′)2 = Ā2 + 1 is invertible and thus A ′ itself is invertible. There-

fore, every family A = (Ax) of symmetric Dirac type operators over a closed

even-dimensional manifold is a bounded deformation of a family A ′ = (A ′
x) of

invertible symmetric Dirac type operators. The family (Px) of positive spectral

projections Px = �[0,+∞)(A
′
x) is a generalized spectral section for A. It follows

from Theorems 4.4 and 5.4 that A admits a spectral section and a trivializing

family.

A relevant cobordism theorem in this case should take into account the grad-

ing σ and state the existence of a Cl(1) spectral section for the family Ā of odd

operators. We perform this in the next section; see Theorem 10.2.

10. Cobordism theorems: Z2-graded case

Let N be a smooth compact Riemannian manifold with non-empty boundary

and F be a smooth Hermitian vector bundle over N, as in the previous section.

Denote by E the restriction of F to the boundary M = ∂N.

General cobordism theorem. Let D be a first order symmetric operator

acting on sections of F, A be its boundary operator, and J = d(n) ∈ Iso(E) be

the conormal symbol of D. Then J is self-adjoint and the operator JA + AtJ

has zeroth order (that is, JA + AtJ is a bundle endomorphism). Suppose, in

addition, that the symbol of A is self-adjoint. Then both A − At and JA + AJ

are bundle endomorphisms.

Let σ be a bundle symmetry (that is, a self-adjoint unitary bundle automor-

phism) of E defined by the formula

(10.1) σ = J · |J|−1 = J · (J2)−1/2.

Then σA + Aσ is also a bundle endomorphism. Indeed, the symbol a of A

satisfies the anticommutation relation

(10.2) J(y)a(ξ) + a(ξ)J(y) = 0 for every y ∈M and ξ ∈ T∗yM.

Thus the positive operator T = J(y)2 commutes with a(ξ). Multiplying (10.2)

by T−1/2, we get σ(y)a(ξ) + a(ξ)σ(y) = 0, which implies σA +Aσ ∈ End(E).

Instead of the symmetrized boundary operator Ã = (A + At)/2, we now

consider the supersymmetrized operator

(10.3) Ā = (Ã − σÃσ)/2 = (A+ At − σAσ− σAtσ)/4,

which also differs from A by a bundle endomorphism.
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In such a way, every first order symmetric elliptic operator D acting

on F whose boundary operator has self-adjoint symbol determines a Z2-grading

σ = σD of E and an odd symmetric elliptic operator Ā = ĀD acting on E.

By [BLZ, Theorem 6.1.I], the space Λ of Cauchy data of D is a Lagrangian

subspace of the symplectic Hilbert space (H, iJ), H = L2(M;E). In other words,

the orthogonal projection Q of H onto Λ (the Calderón projection) satisfies

the anticommutation relation J(2Q − 1) + (2Q − 1)J = 0. Reasoning as above,

we obtain σ(2Q − 1) + (2Q − 1)σ = 0. Therefore, Q is a generalized Cl(1)

spectral section for Ā, as well as for any other odd symmetric operator with the

symbol a.

Applying our previous results to this situation, we obtain a graded version of

the general cobordism theorem.

Theorem 10.1: Let X be an arbitrary topological space and D = (Dx)x∈X be

a family of first order symmetric elliptic differential operators acting on sections

of F. Suppose that the principal symbol ax of the boundary operator of Dx is

self-adjoint for every x ∈ X and that the conormal symbol Jx of Dx and the

Calderón projection Q(Dx) depend continuously on x. Let the grading σx on

the boundary bundle E be defined by the unitary part of Jx as in (10.1), and

let Ā = (Āx) be a continuous family of odd symmetric differential operators Āx

over the boundary having ax as their principal symbols. Then Ā admits both

a Cl(1) spectral section and a trivializing family of odd smoothing trivializing

operators.

Proof. The grading σ determines a norm continuous map from X to the space

of symmetries

Σ = {S ∈ Bsa(H) | S2 = 1 and dimker(S+ 1) = dimker(S− 1) = ∞},

where H = L2(M;E). The trivial Hilbert bundle over Σ with the fiber H has the

canonical decomposition into the direct sum H0 ⊕H1 of two Hilbert bundles,

whose fibers over S ∈ Σ are ker(S+ 1) and ker(S− 1) respectively; H0 and H1

are locally trivial bundles with infinite-dimensional fibers H ′ and the structure

group U(H ′). The structure group is contractible by Kuiper’s theorem [Ku].

The base space Σ is metric and thus paracompact, so both these bundles are

trivial by [Do, Theorem 7.5]. The direct sum of their trivializations determines a

norm continuous map u : Σ→ U(H) such that the symmetry S0 = u(S)·S·u(S)∗
does not depend on S.
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Conjugation by the map v = u◦σ : X→ U(H) takes Ā : X→ Rsa
K (H) to a Riesz

continuous map Ā ′ : X → Rsa
K (H) and the family x �→ Q(Dx) of Calderón pro-

jections to a norm continuous map Q ′ : X→ P(H) so that all the operators Ā ′
x

are odd and Q ′ is a generalized Cl(1) spectral section for Ā ′ with respect to

the fixed grading S0 of H. Let P ′ and C ′ be a Cl(1) spectral section and a triv-

ializing family for Ā ′ provided by Theorem 6.6. Then Px = v∗xP
′
xvx is a Cl(1)

spectral section and Cx = v∗xC ′
xvx is a trivializing family for Ā with respect to

the family (σx) of gradings. Since the range of Cx lies in the span of a finite

number of C∞-sections (namely, eigenfunctions of Āx), all the operators Cx are

smoothing.

Dirac type operators. If D is a symmetric Dirac type operator, then the

conormal symbol of D is unitary and thus coincides with the grading σ defined

by (10.1). Applying Theorem 10.1 to this situation, we obtain the following

generalization of [MP2, Corollary 1].

Theorem 10.2: Let X be an arbitrary topological space and D = (Dx)x∈X be

a family of symmetric Dirac type operators satisfying the conditions of Theo-

rem 9.7. Then the family Ā = (Āx) of supersymmetrized boundary operators

admits both a Cl(1) spectral section and a trivializing family with odd smooth-

ing trivializing operators, with respect to the family of gradings of boundary

bundles given by the conormal symbol of Dx.

Proof. By Propositions 9.3 and 9.6, the Calderón projection Q(Dx) depends

continuously on x. By the definition of the supersymmetrized boundary opera-

tor, Āx depends continuously on x and its symbol coincides with the symbol ax

of the boundary operator of Dx. It remains to apply Theorem 10.1.

Part 3. Graph continuous families

Throughout this part, all families of regular operators are supposed to be graph

continuous.

Recall that the Cayley transform of a regular self-adjoint operator A is the

unitary operator defined by the formula

κ(A) = (A − i)(A + i)−1.
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The Cayley transform κ : gRsa(H) → U(H) is a homeomorphism on the image

[BLP, Theorem 1.1]. Therefore, the graph topology on the subspace Rsa(H)

of R(H) can be equivalently described as the topology induced by the inclu-

sion κ : Rsa(H) ↪→ U(H). We will use this fact below.

11. Semibounded operators

Positive operators. Let R+(H) denote the subspace of Rsa(H) consisting of

positive operators.

Proposition 11.1: The restrictions of the graph topology and the Riesz topol-

ogy to R+(H) coincide.

Proof. For a = f(A) the identity (1+A2)−1 = 1− a2 implies

κ(A) =
A− i

A+ i
=
a− i

√
1− a2

a+ i
√
1− a2

= (a − i
√

1− a2)2 = κ̃(a),

where κ̃ : [−1, 1] → U(C) = {z ∈ C | |z| = 1} is a continuous function given

by the formula κ̃(a) = (a − i
√
1− a2)2. Thus the Cayley transform factors

through the bounded transform: κ = κ̃ ◦ f. The function κ̃ is not invertible.

However, its restriction to the interval [0, 1] is invertible: it is a homeomorphism

from [0, 1] to the bottom half of the unite circle Γ = {eit | t ∈ [−π, 0]}. The

inverse homeomorphism ϕ : Γ → [0, 1] is given by the formula ϕ(eit) = cos(t/2).

Hence the restriction of the bounded transform f to R+(H) coincides with the

composition ϕ ◦ κ and thus is graph-to-norm continuous. It follows that the

restriction of the graph topology to R+(H) coincides with the Riesz topology.

Semibounded operators. An operator A ∈ Rsa(H) is called bounded from

below if A−c is positive for some c ∈ R. Similarly, A is called bounded from

above if c−A is positive for some c∈R (equivalently, −A is bounded from below).

A is called semibounded if it is bounded either from below or from above.

Proposition 11.1 can be easily generalized to operators bounded from below

or from above by a fixed constant c.

Proposition 11.2: The graph topology coincides with the Riesz topology on

the subsets

R�c(H) = {A ∈ Rsa(H) | A− c � 0} and R�c(H) = {A ∈ Rsa(H) | c−A � 0}

of Rsa(H) for every c ∈ R.



42 M. PROKHOROVA Isr. J. Math.

Proof. We work as in the proof of Proposition 11.1, with the same designa-

tions. The function κ̃ defines a homeomorphism from the interval [f(c), 1] to

the arc Γc = {eit | t ∈ [tc, 0]}, where tc ∈ (−2π, 0), eitc = κ(c). The in-

verse homeomorphism ϕ : Γc → [f(c), 1] is given by the same formula as before,

ϕ(eit) = cos(t/2). The restriction of the bounded transform f to R�c(H) co-

incides with the composition ϕ ◦ κ and thus is graph-to-norm continuous. It

follows that the restriction of the graph topology to R�c(H) coincides with the

Riesz topology.

The proof for R�c(H) is quite similar (or, equivalently, can be obtained from

the result for R�−c(H) using the map A �→ −A, which is a homeomorphism

both in the graph and the Riesz topology).

Families of semibounded operators. By [CL, Addendum, Theorem 1], the

restriction of the graph topology to the subspace of bounded operators coincides

with the usual norm topology, and thus with the Riesz topology.

This property cannot be generalized to the subspace of all semibounded self-

adjoint regular operators. Indeed, Examples 12.4 and 13.1 below demonstrate

families of semibounded operators (namely, each operator is bounded from be-

low), which are graph continuous but Riesz discontinuous. Riesz discontinuity

there is caused by the absence of a continuous lower bound, as the following

proposition shows.

Proposition 11.3: LetA : X→ Rsa
K (H) be a graph continuous family of regular

self-adjoint operators, with each Ax bounded from below. Then the following

two conditions are equivalent:

(1) A is Riesz continuous.

(2) There is a continuous function c : X → R such that Ax − cx � 0 for

every x ∈ X.
The analogous equivalence holds for operators bounded from above.

Proof. ((1) ⇒ (2)) Let cx ∈ R be the exact lower bound of Ax. Then

c̄x = f(cx) ∈ (−1, 1) is the exact lower bound of ax = f(Ax). If A is Riesz

continuous, then x �→ ax is norm continuous, and thus c̄ = f ◦ c is a continuous

function from X to (−1, 1). Therefore, c = f−1 ◦ c̄ : X→ R,

cx = c̄x(1− c̄
2
x)

−1/2,

is also continuous.
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((2) ⇒ (1)) Let c be such a function. Then every point x ∈ X has an open

neighborhood Ux such that cy > cx − 1 for every y ∈ Ux. The restriction

of A to Ux satisfies conditions of Proposition 11.2 (with the constant lower

bound cx−1) and thus is Riesz continuous. Since the open subsets Ux cover X,

A itself is Riesz continuous.

The same reasoning but with inverted signs works for operators bounded from

above. This completes the proof of the proposition.

12. Spectral sections

Arbitrary base spaces. It follows from Theorem 4.4 that a Riesz continuous

family always has local spectral sections locally, and the only obstruction for

existence of a global spectral section is a topological one. In contrast with this,

a graph continuous family may have no spectral section even locally. In fact,

Riesz continuity is necessary for a local existence of a spectral section, as the

following result shows.

Theorem 12.1: Let X be an arbitrary topological space and A : X→ Rsa
K (H) be

a graph continuous map having a spectral section. Then A is Riesz continuous.

Proof. Let P be a spectral section for A and r : X → R+ be the corresponding

cut-off function. Let x0 ∈ X. Choose a positive constant r0 and a neighbor-

hood V of x0 such that ±r0 ∈ Res(Ax) and r0 > r(x) for all x ∈ V .
The finite rank projection S◦x = �(−r0,r0)(Ax) depends continuously on x ∈ V

and commutes with Px. Hence

(12.1) S◦x, S+x = (1− S◦x)Px, and S−x = (1− S◦x)(1 − Px)

are mutually orthogonal projections depending continuously on x ∈ V . Decreas-

ing V if necessary, one can find a continuous map g : V → U(H) such that the

conjugation by g takes these three projection-valued maps to constant projec-

tions S◦, S+, and S−. Indeed, one can first find a neighborhood V1 ⊂ V of x0 and

a map g1 : V1 → U(H) such that g1(x)S
◦
xg1(x)

∗ ≡ S◦ [WO, Proposition 5.2.6].

Next, one can find a neighborhood V2 ⊂ V1 of x0 and a map g2 : V2 → U(H)

such that g2(x) is equal to the identity on the range of S◦ and the conjugation

by g2(x) takes g1(x)S
+
x g1(x)

∗ to S+. Then g = g2g1 is a desired trivialization

of projections (12.1) over V2.
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Let H◦, H+, and H− be the ranges of projections S◦, S+, and S−. Then

(12.2) gx Ax g
∗
x = A−

x ⊕A◦
x ⊕A+

x

with respect to the orthogonal decomposition H = H− ⊕ H◦ ⊕ H+. The

map gAg∗ : V → Rsa
K (H) is graph continuous, so its components A−, A◦, A+

are also graph continuous. Since A◦ acts on the finite-dimensional space H◦, it
is norm continuous. Both A+ and −A− are bounded from below by a positive

constant r0, so by Proposition 11.1 they are Riesz continuous. Substituting this

to (12.2), we see that gAg∗ is Riesz continuous on V , and thus the restriction

of A to V is also Riesz continuous. Since x0 ∈ X was chosen arbitrarily, A is

Riesz continuous on the whole X. This completes the proof of the theorem.

Compact base spaces. Taking together Theorem 12.1 and Proposition 1.1,

we immediately obtain the following result.

Theorem 12.2: Let X be a compact space and A : X → Rsa
K (H) be a graph

continuous map. Then the following two conditions are equivalent:

(1) A has a spectral section.

(2) A is Riesz continuous and ind(A) = 0 ∈ K1(X).

Remark 12.3: Theorems 12.1 and 12.2 show that the straightforward transfer

of [MP1, Proposition 1] and [MP2, Proposition 2] to elliptic operators on man-

ifolds with boundary does not work; one needs to be very careful using spectral

sections in this framework. For example, J. Yu applies [MP1, Proposition 1]

to families of Dirac operators with local boundary conditions in [Yu]. How-

ever, to make such an application justified, one needs to ensure first that the

corresponding families of unbounded operators are Riesz continuous. This is

typically a very non-trivial problem, the answer to which seems to be unknown

in the general situation considered in [Yu]. It is unknown, except for several

special cases (see, e.g., [BR]), whether families of unbounded operators defined

by boundary value problems are Riesz continuous.

The following example of Rellich [Ka, Example V-4.14] demonstrates lack of

Riesz continuity already in the one-dimensional framework.
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Example 12.4 (Graph continuous but Riesz discontinuous family of local bound-

ary value problems): Let A = −d2/d2t be the second order operator acting on

complex-valued functions ψ : M = [0, 1] → C. For x ∈ R, let Ax be the opera-

tor A with the domain

(12.3) dom(Ax) = {ψ ∈ H2(M;C) | ψ(0) = 0, ψ(1) = xψ ′(1)}

given by local boundary conditions. Here the type of the boundary condition

on the right end of the interval [0, 1] changes from Dirichlet boundary condition

at x = 0 to mixed boundary condition at x 
= 0.

EveryAx considered as an operator onH = L2(M,C) is a self-adjoint operator

with compact resolvent. The map

H2(M;C) → C
3, ψ �→ (ψ(0),ψ(1),ψ ′(1)),

is continuous, so the domain of Ax is a closed subspace of H2(M;C) depending

continuously on x in the gap topology on Gr(H2(M;C)). It follows from [P1,

Proposition A.9] that the family A = (Ax) of unbounded operators on H is

graph continuous.

Each operator Ax is bounded from below. It can be easily seen that Ax has

a negative eigenvalue if and only if x ∈ (0, 1). The function

ψ(t) = eμt − e−μt, μ > 0,

is an eigenfunction of Ax if e2μ −1 = xμ(e2μ +1); the corresponding eigenvalue

is λ = −μ2. As x goes to +0, μ goes to +∞ and thus λ goes to −∞. It follows

that the negative eigenvalue of ax = f(Ax) goes to −1 as x → +0. However,

A0 and thus a0 is positive. Therefore, a = f ◦ A is discontinuous at x = 0 and

thus A is Riesz discontinuous at x = 0.

In conclusion, the map A : R → Rsa
K (H) is graph continuous, but its restriction

to every interval [0, ε] is Riesz discontinuous and does not admit a spectral

section.

13. Generalized spectral sections

In the previous section we showed that a graph continuous family admitting

a spectral section has to be Riesz continuous. The situation with generalized

spectral sections, however, is more ambiguous. We give here several illustrating

examples.
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Graph continuous but Riesz discontinuous family with generalized

spectral section. In Example 12.4 above a graph continuous family of local

boundary value problems is Riesz discontinuous but has a generalized spectral

section P ≡ 1. The following example of Fuglede (presented in [Ni, Remark

1.6]) demonstrates a discrete analogue of such a situation.

Example 13.1: Let X = N ∪ {∞} be a one-point compactification of N. Let

(en)n∈N be an orthonormal basis of H. Consider a family A : X → Rsa
K (H) of

diagonal (in the chosen basis) semibounded operators given by the formulae

Ax(en) =

⎧⎨
⎩
n, n 
= x
−n, n = x

for x ∈ N; A∞(en) = n.

Since ‖κ(A∞) − κ(Ax)‖ = |κ(x) − κ(−x)| → 0 as x→ ∞, the family A is graph

continuous. On the other side, ‖f(A∞) − f(Ax)‖ = 2f(x) → 2 as x → ∞, so A

is Riesz discontinuous at ∞.

The constant function P : X → P(H) taking every x ∈ X to the identity is a

generalized spectral section for A. Moreover, Px is even an rx-spectral section

for Ax, where r : X → R+ is an arbitrary function such that rx > x for x ∈ N.

However, every such function r is discontinuous at ∞, so P is not a global

spectral section for A. (Otherwise, of course, we would have a contradiction

with Theorem 12.1.)

Graph continuous families without generalized spectral sections.

A generalized spectral section does not necessarily exist even for a contractible

base space (Example 13.2) or for a family of invertible semibounded operators

(Example 13.3).

Example 13.2: The space Rsa
K (H) equipped with the graph topology is path

connected [Jo]. Let A : [0, 1] → Rsa
K (H) be a graph continuous path connecting

a negative operator A0 with a positive operator A1. (Such a path A can even

be chosen consisting of invertible operators, but we do not explore it here for

simplicity.) Then A has no generalized spectral section. Indeed, a general-

ized spectral section P0 for A0 should be compact, while a generalized spectral

section P1 for A1 should have compact complement 1− P1. Any two such pro-

jections P0 and P1 lie in the different connected components of the space P(H),

so they cannot be connected by a path P : [0, 1] → P(H).
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Example 13.3: Let X = N ∪ {∞} be a one-point compactification of N

and (en)n∈N be an orthonormal basis of H, as in Example 13.1. Consider a

family A : X→ Rsa
K (H) of invertible semibounded operators given by the formu-

lae

Ax(en) =

⎧⎨
⎩
−n, n < x

n, n � x
for x ∈ N; A∞(en) = −n.

The same reasoning as in Example 13.1 shows that A is graph continuous. How-

ever, A has no generalized spectral section. Indeed, the operator A∞ is bounded

from above, while all the other Ax, x ∈ N, are bounded from below. Thus a

generalized spectral section P∞ for A∞ should be compact, while a generalized

spectral section Px for Ax, x ∈ N, should have compact complement 1 − Px.

Since P∞ cannot be a limit point of Px, such a map P cannot be norm continu-

ous.

Index

Â, 21

I, range of cut-off parameters, 9

σ, grading, 19

Spaces

B(H), bounded operators, 2

Bsa(H), self-adjoint operators, 2

B1(H), odd self-adjoint

operators, 19

Beu(H), essentially unitary

operators, 7

K(H), compact operators, 2

P(H), projections, 2

R(H), regular operators, 6

rR(H), gR(H), 8

RK(H), regular operators with

compact resolvents, 7

Rsa(H), self-adjoint regular

operators, 7

R+(H), positive regular

operators, 41

R1(H), odd self-adjoint regular

operators, 19

U(H), unitary operators, 2

UK(H), 22

Z, 9, 20

Z ′, Z1, 20

Z̄ ′, Z̄1, 21
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L2d(E), Sobolev space, 29

Ψd(E,E
′), pseudodifferential

operators of order d, 29

Ψell
d (E,E ′), elliptic
pseudodifferential operators,

29

W(F, F′), 34
Maps

�, characteristic function, 3

ρ, sign function, 24

f, bounded transform, 7

κ, Cayley transform, 40

κ̃, 41

γ : S → Bsa(H), 18

γ : S1 → B1(H), 25

Bundles and bundle maps

πG : G → Z, 9

πG : G
1 → Z1, G1 → Z̄1, 22

πS : S → Z, 12

πS : S
1 → Z̄1, 24

ι : S → G, 12

ι : S1 → G1, 24

τ : T → S, 17

τ : T1 → S1, 25

ϕε : G → S, 12

ϕε : G
1 → S1, 24

boundary operator, 31

bounded transform, 7

Calderón projection, 31

Cayley transform, 40

cut-off function, 3

Dirac type operator, 35

generalized spectral section, 8

inner solution, 33

operators

bounded

essentially odd, 28

essentially self-adjoint, 28

essentially unitary, 7

regular, 6

self-adjoint, 7

with compact resolvents, 7

trivializing, 16

space of Cauchy data, 31

spectral section, 3, 8

Cl(1), 20

generalized, 3

generalized Cl(1), 21

supersymmetrized tangential

operator, 39

symmetrized tangential operator,

31

tangential operator, 31

topology

graph, 6

Riesz, 4

weak inner UCP, 33

weak UCP, 34
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